
2023-24 MATH2048: Honours Linear Algebra II

Homework 5 Answer

Due: 2023-10-16 (Monday) 23:59

For the following homework questions, please give reasons in your solutions.

Scan your solutions and submit it via the Blackboard system before due date.

All questions are selected from Friedberg §2.4-2.5.

1. For each of the following pairs of ordered bases β and β′ for P2(R), find the change

of coordinate matrix that changes β′-coordinates into β-coordinates.

(a) β = {x2, x, 1} and β′ = {a2x2 + a1x+ a0, b2x
2 + b1x+ b0, c2x

2 + c1x+ c0}

(b) β = {1, x, x2} and β′ = {a2x2 + a1x+ a0, b2x
2 + b1x+ b0, c2x

2 + c1x+ c0}

Solution.

(a) For β = {x2, x, 1} and β′ = {v1 = a2x
2 + a1x + a0, v2 = b2x

2 + b1x + b0, v3 =

c2x
2 + c1x+ c0}, the change of coordinate matrix that changes β′-coordinates

into β-coordinates is given by:

[[v1]β, [v2]β, [v3]β] =


a2 b2 c2

a1 b1 c1

a0 b0 c0


(b) Similarly, the change of coordinate matrix that changes β′-coordinates into

β-coordinates is also given by:


a0 b0 c0

a1 b1 c1

a2 b2 c2


2. For each matrix A and ordered basis β, find [LA]β. Also, find an invertible matrix

Q such that [LA]β = Q−1AQ.
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(a) A =

1 3

1 1

 and β =


1

1

 ,

1

2


(b) A =

1 2

2 1

 and β =


1

1

 ,

 1

−1


Solution.

(a) Note that LA(e1) =

4

2

 = 6e1 − 2e2 and LA(e2) =

7

3

 = 11e1 − 4e2.

Therefore, the matrix representation with respect to β is

[LA]β =

 6 11

−2 −4

 .

The matrix Q is the change of basis matrix from β to the standard basis, i.e.,

Q =

1 1

1 2

 .

It can be easily checked that this matrix indeed satisfies [LA]β = Q−1AQ.

(b) Again, LA(e1) =

3

3

 = 3e1 and LA(e2) =

−1

1

 = −e2. Therefore, the

matrix is

[LA]β =

3 0

0 −1

 ,

and the matrix Q is just

Q =

1 1

1 −1

 .

3. Let T : V → W be a linear transformation from an n-dimensional vector space V

to an m-dimensional vector space W . Let β and γ be ordered bases for V and W ,

respectively. Prove that rank(T ) = rank(LA) and that nullity(T ) = nullity(LA),

where A = [T ]γβ. Hint: Apply Exercise 17 to Figure 2.2.

Proof. We want to show that rank(T ) = rank(LA) and that nullity(T ) = nullity(LA).

The following commutative diagram illustrates the relationship between T and LA:
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V
T−→ W

↓ φβ ↓ φγ

Rn LA−−→ Rm

where φβ = [−]β and φγ = [−]γ are the coordinate maps associated with the bases

β and γ, and are linear isomorphisms.

By the diagram, LA ◦ φβ = φγ ◦ T . Then LA(Rn) = LA ◦ φβ(V ) = φγ ◦ T (V ). Since

φγ is a linear isomorphism, dim(T (V )) = dim(φγ(T (V ))). Therefore, rank(T ) =

dim(T (V )) = dim(φγ(T (V ))) = dim(LA(Rn)) = rank(LA).

Similar reasoning applies to the null spaces. Since φγ is an isomorphism, φ−1γ (0) = 0.

Then ker(T ) = T−1(0) = T−1φ−1γ (0) = (φγ ◦ T )−1(0) = (LA ◦ φβ)−1(0) = φ−1β ◦

L−1A (0) = φ−1β (ker(LA)).

Since φβ is an isomorphism, ker(T ) = φ−1β (ker(LA)) has the same dimension as

ker(LA). Therefore, nullity(T ) = nullity(LA).

Remark. Since all dimensions are finite, we can prove either one equality, and get

the other by the rank-nullity theorem (rank+nullity=source dim).

4. Let c0, c1, . . . , cn be distinct scalars from an infinite field F . Define a transforma-

tion T : Pn(F ) → Fn+1 by T (f) = (f(c0), f(c1), . . . , f(cn)). Prove that T is an

isomorphism. Hint: Use the Lagrange polynomials associated with c0, c1, . . . , cn.

Proof. Let c0, c1, . . . , cn be distinct scalars from an infinite field F . We define a

transformation T : Pn(F )→ Fn+1 by T (f) = (f(c0), f(c1), . . . , f(cn)).

To show that T is an isomorphism, we need to show that T is both injective and sur-

jective. (While it would be sufficient to prove one of these properties and then apply

the rank-nullity theorem, given that the dimensions of the source and target spaces

agree and finite, we will explicitly show both properties for the sake of thoroughness

and clarity.)

Injectivity: Suppose T (f) = T (g) for some f, g ∈ Pn(F ). Then f(ci) = g(ci) for

all i = 0, 1, . . . , n. Consider the polynomial h(x) = f(x)− g(x). Then h(ci) = 0 for

all i. But h(x) is a polynomial of degree at most n with n+ 1 roots, which can only

be the zero polynomial. Therefore, f = g, so T is injective.

3



Surjectivity: Let (a0, a1, . . . , an) ∈ Fn+1. We need to find a polynomial f ∈ Pn(F )

such that T (f) = (a0, a1, . . . , an). For this, we use the Lagrange polynomials. The

Lagrange polynomial Li(x) associated with ci is given by

Li(x) =
∏
j 6=i

x− cj
ci − cj

.

Then Li(cj) = δij , where δij is the Kronecker delta. We can then construct the

polynomial f(x) =
∑n

i=0 aiLi(x). For this polynomial, f(ci) = ai for all i, so

T (f) = (a0, a1, . . . , an). Therefore, T is surjective.

Since T is both injective and surjective, it is an isomorphism.

5. Consider a linear transformation T : V → W , where dim(V ) = dim(W ) = n. Show

that if T has a left inverse U , then U is also a right inverse of T , thus T is invertible.

(Hint. Sec. 2.4 Q10(b), prove it if you use it)

Proof. Let T : V → W be a linear transformation, where dim(V ) = dim(W ) = n,

and let U : W → V be a left inverse of T , i.e., U ◦ T = IdV .

Since U ◦ T = IdV , we have that T is injective. Since dim(V ) = dim(W ) = n, by

the rank-nullity theorem, the rank of T must be n, i.e., the image of T is the whole

of V . Then T is bijective and has a set-theoretical right inverse U ′.

Then TU ′ = Id = UT . Hence U = UIV = UTU ′ = IV U
′ = U ′. Hence, U = U ′ is a

right inverse of T , and so T is invertible.
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